Solid Xenon

Jonghee Yoo

Fermilab Center for Particle Astrophysics Retreat 18 April 2009

CDMS Axion Search

- Searching for the invisible axion models
- For discovery or solar model consistent search
 → g_{aγγ} < 0.5 × 10⁻¹⁰ GeV ⁻¹ (solar ν limit)
 Require 100 kg of detector fiducial volume
- Require 100 kg of detector fiducial volume and < 10⁻⁴ dru of gamma/e background level (dru = counts/kg/day/keV)
- The current CDMS gamma background level: ~1 dru

Big Picture : Particle & Astro

Dark Matter Search

- Most models are at $\sigma > 10^{-47} \text{cm}^2$
- The goal for the major Dark Matter experiments:
 - → nuclear recoil background level should be controlled less than ~10⁻⁷ dru (= counts/day/kg/keV)
 - → Current CDMS nuclear recoil background level (world best): ~10⁻⁴ dru
- 10⁴ times better background control required (with a huge detector volume)!

10⁻⁷ counts/day/kg/keV

1 counts/3,000years/kg/10keVs

1 counts/year/3tons/10keVs

A Mission in the Real World

- When you first build a detector (with raw target material and signal readout)
 you will typically have 10~100 Hz of low energy event rate
 by cosmic rays, ambient gammas and internal radioactive contaminations etc
- In order to realize a low background detector (1 event/years/tons/keVs ultra-silent detector)
 - → ~10⁸ background reduction from the raw detector
 - → Gas distillation/purification, material screening, deeper site, active/passive shielding ...
 - **→** Extremely Challenging!
- Self-shielding is suggested as a solution
 - → Shield out gammas and neutrons at the surface of the detector target material
 - → Noble liquid detectors: XENON / LUX / XMASS / WArP / ArDM / MAX / ...
- Concerns about the noble liquid detectors
 - **☑** Background contamination from PMTs? → QUPID, acrylic vessels ...
 - ✓ Electron drift above meter scale? → electro-negative purity control ...
 - ✓ 2nd contamination from the circulation loop? → closed circulation system ...
 - ✓ Outgas or vacuum leak? → do better job

Fine Tuning the Existing Recipes

100 kg Dual-phase Xenon TPC Waseda University (~2002?) Kamioka@Japan

170 kg Dual-phase Xenon TPC XENON Collaboration (~2009) LUX Collaboration (~2009) **Gran Sasso@Italy**

300 kg Dual-phase Xenon TPC SUSEL@USA

Fine Tuning the Existing Recipes

XMASS: Single phase detector (scintillation light readout)

- Kamioka Underground Laboratory, Japan
- 100 kg R&D phase was successful Position and energy, self shielding, BG study
- Background reduction plan
 - PMT gammas : self shielding, fiducial volume cut 10 mBq/PMT (Hamamatsu R10789) achieved!
 - External gammas and neutrons : reduce with water shielding
- 800 kg (100 kg FV) operation will start in 2009

100 kg R&D detector

Two Fundamental Questions

- 1. How will you make such a low background detector?
- 2. How will you keep the detector pure?

Solid Xenon

Solid Xenon

Why Xenon?

- No long-lived Xe radio isotope (no intrinsic background)
- High yield of scintillation light
- Scintillation wavelength: 175nm (optically transparent)
- Relatively high melting point : $T_m = 161K$
- Simple crystal structure : fcc (same with Ge)
- Easy purification (distillation, etc)
- Self shielding: Z=54

Why Solid?

- For solar axion search, being a crystal is crucial (Bragg scattering)
- Even more scintillation light (61 γ / keV) than LXe (42 γ / keV)
- Drifting electrons is easier in the crystal
- Superb superconducting sensors are running at low temperature (mK ~ K)
- Phonon read out : largest number of quanta (~10,000 phonons / keV)
 - In principle best energy resolution can be achieved in phonon channel
 - Luke-phonon readout will provide ionization energy and position information
- No further background contamination through circulation loop: no Xe circulation
- Optimal detector design for low background experiment
 - Possible container free design
 - No concerns about outgassing and leaks

Imagine

FERMILAB CENTER FOR PARTICLE ASTROPHYSICS RETREAT, JONGHEE YOO (FERMILAB)

Short History of Solid Xenon (Argon)

1999@Japan

Successful contact of thin Solid Xenon to an ionization sensor using carbon graphite film

2004@TAMU

Ionization readout from Solid Ar (not Xe). Failed to grow large crystals

1994@FNAL

Solid Argon detector wasn't successful

2008@FNAL

Solid Xenon Project initiated

2004@Syracuse

A student grew large Xenon crystals everyday without any problem for medical research

Figure 3: the first xenon layer grown on carbon graphite

Image NASA © 2008 Europa Technologies Map data © 2008 DMapas/El Mercuri © 2008 Tele Atlas

Streaming ||||||| 100%

Eye alt 5863.59 mi

Pointer 39° 00'08.26"N 130° 47'49.47'E

Streaming ||||||| 100%

Eye alt 5863.59 n Pointer 34° 50'32.09"N 96° 18'31.72"W

Solid Xenon R&D Phase-I

- Reproduce Syracuse setup
- Grow ~kg size of solid xenon (inner chamber capacity : ~10kg)

2008.May: FCPA Review

2008.June: R&D phase-I approved

2008.July-Sep: Design solid xenon system

to fulfill FNAL safety regulation

<u>2008.Oct - 2009.Jan</u>: Mechanical engineering of Stainless Steel chambers (external vendor)

Phase-I: Lab-F@Fermilab

Jan - Mar 2009: Install solid xenon chamber at Fermilab (Lab-F "clean room")

April - June 2009: System check and prepare for the Fermilab safety review

- **→** Top flange fabrication at FNAL mechanics shop
- → Assemble parts, leak test and system check
- → Grow sub-kg size xenon crystal: understand systematic issue
- → Grow ~kg size xenon crystal: optical property check

May - June 2009: Design phase-II systems for large crystal grow and signal readout

- (1) Prepare full prescription for growing solid xenon crystal
- (2) Systematic study for growing solid argon crystal
- (3) Propose Phase-II

Phase-I: Xenon Chambers

FERMILAB CENTER FOR PARTICLE ASTROPHYSICS RETREAT, JONGHEE YOO (FERMILAB)

Phase-II: Signal readout and larger crystal

1. Scintillation / Ionization readout

- scintillation readout using standard photon sensors (PMT, APDs...)
- ionization readout by drifting electrons (grid mash)
- use phase-I safety chamber (with high purity quartz vessels)
- xenon purification systems (commercial purifier or build one)

2. Demonstrate large solid xenon crystal growth (~100 kg)

- make a full prescription for growing large solid xenon
- crystal orientation measurement ?

3. Design 10 kg phase prototype detector

Fermilab Liquid Argon TPC test Facility

FERMILAB CENTER FOR PARTICLE ASTROPHYSICS RETREAT, JONGHEE YOO (FERMILAB)

Xenon Purity Monitor

Material test chamber

* Electronegative purity monitor

- A new idea for optical purity monitor!
- Integrate Cavity Absorption Measurement (ICAM) → used for oceanography to measure the purity of the water
- R&D issue to find out proper reflector for xenon scintillation light (~175nm)
- NIM paper in preparation for the R&D proposal

Phase-II: Big Vacuum Chamber

Used vacuum chamber at a mechanical vendor: perfect fit for our phase-II R&D

→ Save substantial amount of design/mechanical engineering time and budget

Synthetic quartz vessel COUPP (@FNAL)

Phase-II: Orientations of the Xenon Crystal?

- Use the phase-I chambers with minor modification
- X-ray / neutron diffraction measure
- Epitaxial growth of the crystal?

Signal Readout

Scintillation light

PMT/QUPID/APD ...

Nano-wire / quantum dots (?)
Transition Edge Sensor (TES)

Ionization Readout

Grid mash Electrodes / Si detector ... TES

Phonon Readout

Cryogenics lab

- Use our collaboration (U.Florida)

Cold and warm electronics

- Well studied in CDMS collaboration

Ballistic phonon readout with TES

→ opens a whole new world!

For phonon readout
Attaching sensors on the solid xenon is the crucial step

Development of a Solid Xe Ionization Chamber

H.Nawa Y.Tamagawa M.Miyajima Department of Applied Physics, Fukui University 9-1, Fukui 3-chome, Fukui, 910-8507, Japan

Figure 2: The temperature distribution near the contact surface of solid xenon and metal
(a).Perfect contact, (b).Imperfect contact

Figure 1: Schematic drawing for a solid xenon ionization chamber and a gas handling system

Figure 3: the first xenon layer grown on carbon graphite

Solid Xenon Collaboration

Fermilab

Jonghee Yoo / Dan Bauer / Rich Schmitt / Mike Sarychev

University of Florida

Tarek Saab / Durdana Balakishieva

Texas A&M University

Rupak Mahapatra

MIT

Enectali Figueroa-Feliciano / James Kerman

Columbia

Prof. Elena Aprile (+ a postdoc and a graduate student)

Interest:

Prof. Mitsuhiro Miyajima (Waseda University)

Dr. Alexander Bolozdynya (CWRU)

Specific Questions by FCPA Directorate

(1) Why Fermilab?

- a) dark matter, axions, neutrino
- b) safety, infrastructure, engineers, technicians, pseudo-infinite support
- c) the idea is born at FNAL

(2) What are the risks

a) Technical

Xenon crystal will grow, but how big and how pure? Phonon readout? \rightarrow crucial for 0ν2β decay experiment

b) Management/budget

Xenon price getting cheaper but still very expensive (\$4,000~\$3,000/kg)!

→ Any xenon at the Lab garage?

(3) What are the next steps?

Phase-I

Demonstrate ~kg solid xenon (hopefully within June 2009) Write a full prescription of making xenon crystal

Phase-II

Move the all setup to PAB (currently at Lab-F)

Scintillation/ionization readout (Ar / Xe)

measure optical and electric characteristics

Demonstrate scalability of order 100 kg